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Quantum Information (I)

Quantum-bit (qubit)

basis states:

“0” =̂ |0〉 =




1

0



 ∈ C
2, “1” =̂ |1〉 =




0

1



 ∈ C
2

general state:

|q〉 = α|0〉+ β|1〉 where α, β ∈ C, |α|2 + |β|2 = 1

measurement:

• result “0” with probability |α|2, projection P0 = |0〉〈0|

• result “1” with probability |β|2, projection P1 = |1〉〈1|
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Quantum Information (II)

Quantum register

basis states:

|b1〉 ⊗ . . .⊗ |bn〉 =: |b1 . . . bn〉 = |b〉 where bi ∈ {0, 1}

general state:

|ψ〉 =
∑

x∈{0,1}n

cx|x〉 where
∑

x∈{0,1}n |cx|2 = 1

−→ normalized vector in (C2)⊗n ∼= C2n

basis vectors are labelled by bitstrings x

partial measurement of first qubit, e. g., result “0”:

|ψ′〉 = α(|0〉〈0| ⊗ I2 ⊗ · · · ⊗ I2)|ψ〉 = α
∑

y∈{0,1}n−1

c0y|0y〉
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Quantum Information (III)

Quantum operations

• unitary transformations

(solution of Schrödinger equation for closed systems)

• measurements: orthogonal projection operators Pi

Elementary operations

• local unitary operations U (i) = I ⊗ . . .⊗ I ⊗ U ⊗ I ⊗ . . .⊗ I where

U ∈ SU(2)

• “controlled NOT operation”

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

=̂
i

•
=̂ |x〉|y〉 7→ |x〉|x+ y〉
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Quantum Information (IV)

Mixed States

• ensemble of quantum states |ψi〉 with probabilities pi

• modelled by density matrix

ρ =
∑

i

pi|ψi〉〈ψi|

where |ψi〉〈ψi| is the projector onto the state |ψi〉

• example:

measurement of |ψ〉 = α|0〉+ β|1〉 in standard basis {|0〉, |1〉}

ρ =




|α|2 0

0 |β|2





Markus Grassl – 5– 16.11.2012



Quantum Codes from Classical Codes: An overview

Interaction System/Environment

“Closed” System

environment |ε〉

system |φ〉 in
te
r-

a
ct
io
n

}

= Uenv/sys

(
|ε〉|φ〉

)

“Channel”

Q : ρin := |φ〉〈φ| 7−→ ρout := Q(|φ〉〈φ|) :=
∑

i

EiρinE
†
i

with Kraus operators (error operators) Ei

Local/low correlated errors

• product channel Q⊗n where Q is “close” to identity

• Q can be expressed (approximated) with error operators Ẽi such that each

Ei acts on few subsystems, e. g. quantum gates
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Quantum Error-Correcting Codes

• subspace C of a complex vector space H ∼= CN

usually: H ∼= Cm ⊗ Cm ⊗ . . .⊗ Cm =: (Cm)⊗n “n qudits”

• errors: described by linear transformations acting on

– some of the subsystems (local errors)

– many subsystems in the same way (correlated errors)

• notation: C = [[n, k, d]]q = ((n, qk, d))q

qk-dimensional subspace C of (Cq)⊗n

• minimum distance d:

– detection of errors acting on d− 1 subsystems

– correction of errors acting on ⌊(d− 1)/2⌋ subsystems

– correction of erasures acting on d− 1 known subsystems
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Basic Ideas

partitioning of all words orthogonal decomposition

– combinatorics

– (linear) algebra

PPi qn words

qn dimensional





















































 C

E1

Ei

Eqn-k−1

• codewords

• • • bounded weight errors

• other errors (Cq)⊗n = HC ⊕HE1
⊕ . . .⊕HEi

⊕ . . .
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Characterization of QECCs

QECC Characterization

[Knill & Laflamme, Phyical Review A 55, 900–911 (1997)]

A subspace C of H with orthonormal basis {|c1〉, . . . , |cK〉} is an

error-correcting code for the error operators E = {E1, E2, . . .}, if there
exists constants αk,l ∈ C such that for all |ci〉, |cj〉 and for all

Ek, El ∈ E :
〈ci|E†

kEl|cj〉 = δi,jαk,l. (1)

It is sufficient that (1) holds for a vector space basis of E .
=⇒ only a finite set of errors
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Quantum Errors

Bit-flip error:

• Interchanges |0〉 and |1〉. Corresponds to “classical” bit error.

• Given by NOT gate X =







0 1

1 0







Phase-flip error:

• Inverts the relative phase of |0〉 and |1〉. Has no classical analogue!

• Given by the matrix Z =







1 0

0 −1







Combination:

• Combining bit-flip and phase-flip gives Y =







0 −1

1 0






= XZ.
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Pauli and Hadamard Matrices

“Pauli” matrices:

I, X =





0 1

1 0



 , Z =





1 0

0 −1



 , Y = XZ =





0 −1

1 0





Hadamard matrix: H =
1√
2





1 1

1 −1





Important properties:

• H†XH = Z, “H changes bit-flips to phase-flips”

• ZX =





0 1

−1 0



 = −Y = −XZ, “X and Z anticommute”

• All errors either commute or anticommute!
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Repetition Code

classical:

sender: repeats the information,

e. g. 0 7→ 000, 1 7→ 111

receiver: compares received bits and makes majority decision

quantum mechanical “solution”:

sender: copies the information,

e. g. |ψ〉 = α|0〉+ β|1〉 7→ |ψ〉|ψ〉|ψ〉
receiver: compares and makes majority decision

but: unknown quantum states can neither be copied

nor can they be disturbance-free compared
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The No-Cloning Theorem

Theorem: Unknown quantum states cannot be copied.

Proof: The copier would map |0〉|ψblank〉 7→ |0〉|0〉, |1〉|ψblank〉 7→ |1〉|1〉, and hence

(α|0〉+ β|1〉)|ψblank〉 7→ α|0〉|0〉+ β|1〉|1〉
6= (α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉)
= α2|0〉|0〉+ β2|1〉|1〉+ αβ(|0〉|1〉+ |1〉|0〉)

Contradiction to the linearity of quantum mechanics!
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Simple Quantum Error-Correcting Code

Repetition code: |0〉 7→ |000〉, |1〉 7→ |111〉

Encoding of one qubit:

α|0〉+ β|1〉 7→ α|000〉+ β|111〉.

This defines a two-dimensional subspace HC ≤ H2 ⊗H2 ⊗H2

bit-flip quantum state subspace

no error α|000〉+ β|111〉 (1⊗ 1⊗ 1)HC

1st position α|100〉+ β|011〉 (X ⊗ 1⊗ 1)HC

2nd position α|010〉+ β|101〉 (1⊗X ⊗ 1)HC

3rd position α|001〉+ β|110〉 (1⊗ 1⊗X)HC

Hence we have an orthogonal decomposition of H2 ⊗H2 ⊗H2
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Simple Quantum Error-Correcting Code

Problem: What about phase-errors?

Phase-flip Z: |0〉 7→ |0〉 and |1〉 7→ −|1〉.

In the Hadamard basis |+〉, |−〉 given by

|+〉 = 1√
2
(|0〉+ |1〉),

|−〉 = 1√
2
(|0〉 − |1〉)

the phase-flip operates like the bit-flip Z|+〉 = |−〉, Z|−〉 = |+〉.

To correct phase errors we use repetition code and Hadamard basis:

|0〉 7→ (H ⊗H ⊗H) 1√
2
(|000〉+ |111〉) = 1

2
(|000〉+ |011〉+ |101〉+ |110〉)

|1〉 7→ (H ⊗H ⊗H) 1√
2
(|000〉 − |111〉) = 1

2
(|001〉+ |010〉+ |100〉+ |111〉)
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Simple Quantum Error-Correcting Code

phase-flip quantum state subspace

no error α
2
(|000〉+ |011〉+ |101〉+ |110〉)

+β

2
(|001〉+ |010〉+ |100〉+ |111〉)

(1⊗ 1⊗ 1)HC

1st position α
2
(|000〉+ |011〉−|101〉−|110〉)

+β

2
(|001〉+ |010〉−|100〉−|111〉)

(Z ⊗ 1⊗ 1)HC

2nd position α
2
(|000〉−|011〉+ |101〉−|110〉)

+β

2
(|001〉−|010〉+ |100〉−|111〉)

(1⊗ Z ⊗ 1)HC

3rd position α
2
(|000〉−|011〉−|101〉+ |110〉)

−

β

2
(|001〉+ |010〉+ |100〉−|111〉)

(1⊗ 1⊗ Z)HC

We again obtain an orthogonal decomposition of H2 ⊗H2 ⊗H2
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Shor’s Nine-Qubit Code [[9, 1, 3]]2

Bit-flip code: |0〉 7→ |000〉, |1〉 7→ |111〉
Phase-flip code: |0〉 7→ |+++〉, |1〉 7→ | − −−〉

Effect of single-qubit errors on the bit-flip code:

• X-errors change the basis states, but can be corrected

• Z-errors at any of the three positions:

Z|000〉 = |000〉
Z|111〉 = −|111〉






“encoded” Z-operator

=⇒ bit-flip code & error correction convert the channel into a phase-error

channel

=⇒ Concatenation of bit-flip code and phase-flip code yields [[9, 1, 3]]2
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Bit-flips and Phase-flips

Let C ≤ Fn2 be a linear code. Then the image of the state

1
√

|C|
∑

c∈C

|c〉

under a bit-flip x ∈ Fn2 and a phase-flip z ∈ Fn2 is given by

1
√

|C|
∑

c∈C

(−1)z·c|c+ x〉.

Hadamard transform H ⊗ . . .⊗H maps this to

(−1)xz
√

|C⊥|
∑

c∈C⊥

(−1)x·c|c+ z〉
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CSS Codes

Introduced by R. Calderbank, P. Shor, and A. Steane

[Calderbank & Shor, Physical Review A, 54, 1098–1105, 1996]

[Steane, Physical Review Letters 77, 793–797, 1996]

Construction: Let C1 = [n, k1, d1] and C2 = [n, k2, d2] be classical linear

codes with C⊥
2 ≤ C1. Let {x1, . . . ,xK} be representatives for the cosets

C1/C
⊥
2 . Define quantum states

|xi + C⊥
2 〉 := 1

√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y〉

Theorem: The vector space C spanned by these states is a quantum code with

parameters [[n, k1 + k2 − n, d]] where d ≥ min(d1, d2).
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CSS Codes — how they work

Basis states:

|xi + C⊥
2 〉 = 1

√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y〉

Suppose a bit-flip error b happens to |xi + C⊥
2 〉:

1
√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y + b〉

Now, we introduce an ancilla register initialized in |0〉 and compute the

syndrome.

Markus Grassl – 20– 16.11.2012
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CSS Codes — how they work

Let H1 be the parity check matrix of C1, i. e., xH
t
1 = 0 for all x ∈ C1.

1
√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y + b〉|(xi + y + b)Ht
1〉 =

1
√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y
︸ ︷︷ ︸

∈C1

+b〉|bHt
1〉

Then measure the ancilla to obtain s = bHt
1. Use this to correct the error by a

conditional operation which flips the bits in b.

Phase-flips: Suppose we have the state

1
√

|C⊥
2 |

∑

y∈C⊥

2

(−1)(xi+y)·z|xi + y〉

Then H⊗n yields a superposition over a coset of C2 which has a bit-flip.

Correct it as before (with a parity check matrix for C2).
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Example: Steane’s Seven Qubit Code [[7, 1, 3]]2

Given the dual of a binary Hamming code C with generator matrix

G =







0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1






,

then C is a [7, 3, 4] and C ≤ C⊥. The dual code C⊥ is a [7, 4, 3] and has

generator matrix

G′ =










0 0 0 1 1 0 1

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1
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G t
=

























0 0 0 1

0 0 1 0

0 1 0 0

1 0 1 1

1 1 1 0

0 1 1 1

1 1 0 1

























|0〉

|0〉

|0〉

|ψ〉

|0〉

|0〉

|0〉

H

H

H

•
i

i

•

i

i

i

•

i

i

i

•

i

i

i |c7〉

|c6〉

|c5〉

|c4〉

|c3〉

|c2〉

|c1〉

α|0〉+ β|1〉 7→ α
1√
8

∑

i1,i2,i3∈{0,1}

|0g4 + i3g3 + i2g2 + i1g1〉

+β
1√
8

∑

i1,i2,i3∈{0,1}

|1g4 + i3g3 + i2g2 + i1g1〉
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CSS Codes: Summary

• uses a pair of nested classical codes C2 ≤ C1 over Fq

• basis states of the CSS code correspond to cosets C2 + ti ⊂ C1

=⇒ dimension of the code is |C1|/|C2|

• X-errors are corrected using C1 = [n, k1, d1]q

• Z-errors are corrected using the Euclidean dual C⊥
2 = [n, n− k2, d

⊥
2 ]q

=⇒ C = [[n, k1 − k2,≥ min(d1, d
⊥
2 )]]q

• we can do (slightly) better if

wgt(C1 \ C2) > wgt(C1) or wgt(C
⊥
2 \ C⊥

1 ) > wgt(C⊥
2 )

• we may compute the dual distance using other inner products
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Quantum Stabilizer Codes

[Gottesman, PRA 54 (1996); Calderbank, Rains, Shor, & Sloane, IEEE-IT 44 (1998)]

Basic Idea

Decomposition of the complex vector space into eigenspaces of operators.

Error Basis for Qudits

[A. Ashikhmin & E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT 47 (2001)]

E = {XαZβ : α, β ∈ Fq},

where (you may think of Cq ∼= C[Fq])

Xα :=
∑

x∈Fq

|x+ α〉〈x| for α ∈ Fq

and Zβ :=
∑

z∈Fq

ωtr(βz)|z〉〈z| for β ∈ Fq (ω := ωp = exp(2πi/p))
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Stabilizer Codes

common eigenspace of an Abelian subgroup S of the group Gn with elements

ωγ(Xα1Zβ1)⊗ (Xα2Zβ2)⊗ . . .⊗ (XαnZβn) =: ωγXαZβ,

where α,β ∈ Fnq , γ ∈ Fp.

quotient group:

Gn := Gn/〈ωI〉 ∼= (Fq × Fq)
n ∼= F

n
q × F

n
q as additive group

S Abelian subgroup

⇐⇒ (α,β) ⋆ (α′,β′) = 0 for all ωγ(xαZβ), ωγ
′

(xα
′

Zβ′

) ∈ S,
where ⋆ is a symplectic inner product on Fnq × Fnq .

Stabilizer codes correspond to symplectic codes over Fnq × Fnq .
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Symplectic Codes

most general:

additive codes C ⊂ Fnq × Fnq that are self-orthogonal with respect to

(v,w) ⋆ (v′,w′) := tr(v ·w′ − v′ ·w) = tr(

n∑

i=1

viw
′
i − v′iwi)

most studied:

Fq-linear codes C ⊂ Fnq × Fnq that are self-orthogonal with respect to

(v,w) ⋆ (v′,w′) := v ·w′ − v′ ·w =
n∑

i=1

viw
′
i − v′iwi

Fq2 -linear Hermitian codes C ⊂ Fnq2 that are self-orthogonal with respect to

x ⋆ y :=

n∑

i=1

xqi yi
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Symplectic Codes & Stabilizer Codes

Theorem: (Ashikhmin & Knill)

Let C be a symplectic code over Fq × Fq of size qn−k and let

d := min{wgt(c) : c ∈ C⋆ \ C}.
Then there is a stabilizer code C = [[n, k, d]]q.

Special cases:

• C = C⊥
1 × C⊥

2 with linear codes C1, C2 over Fq, C
⊥
2 ⊂ C1,

d = min{wgt(C1 \ C⊥
2 ),wgt(C2 \ C⊥

1 )}
Calderbank-Shor-Steane (CSS) codes

• C = C1 × C1 with a self-orthogonal linear code C1 ⊂ C⊥
1 over Fq

• C = {(v,w) : v + γw ∈ C1} where C1 is a Hermitian self-orthogonal

linear code over Fq2 (with some particular γ ∈ Fq2 \ Fq)
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Quantum Singleton Bound

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827–1832 (1999)]

general bound on the minimum distance of C = [[n, k, d]]q:

2d ≤ n− k + 2 (2)

Quantum MDS codes:

quantum codes with equality in (2)

Minimum distance of a stabilizer code:

dmin(C) := min{wgt(c) : c ∈ C⋆ \ C} ≥ dmin(C
⋆), (3)

where C is the symplectic code corresponding to C
Note: for QMDS codes we get equality in (3)
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Stabilizer Codes & Classical Codes

• up to a global phase, any element of the n-qubit Pauli group Pn can be

written as

g = Xa1Zb1 ⊗ . . .⊗XanZbn (aj , bj ∈ {0, 1})

• g corresponds to a binary vector (a|b) of length 2n or a vector v = a+ ωb

of length n over GF (4) = {0, 1, ω, ω2}

• the product of two elements g and h given by v = a+ ωb and

w = c+ ωd corresponds to v +w = (a+ c) + ω(b+ d)

• two elements g and h given by v = a+ ωb and w = c+ ωd commute iff

a · d− b · c = 0 or equivalently v ∗w = tr(v ·w2) = 0

• the weight of g equals the Hamming weight of v
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Stabilizer Codes & Classical Codes

• a stabilizer code C = [[n, k, d]] is the joint +1-eigenspace of the stabilizer

group S = 〈S1, . . . , Sn−k〉

• the normalizer N is generated by S and logical operators X1, . . . , Xk,

Z1, . . . , Zk,

• the stabilizer S corresponds to a self-orthogonal additive code

C = (n, 2n−k) over GF (4)

• the normalizer N corresponds to the symplectic dual code C⋆ = (n, 2n+k)

• the minimum distance d of C is given by

d = min{wgt(v) : v ∈ C⋆ \ C}
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Stabilizer and Normalizer

stabilizer state




































SX1 SZ1
...

...

SXn−k SZn−k

Z
X

1 Z
Z

1

...
...

Z
X

k Z
Z

k

X
X

1 X
Z

1

...
...

X
X

k X
Z

k




































stabilizer
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Canonical Basis

• fix logical operators Xj and Zj

• the stabilizer S and the logical operators Zj mutually commute

• the logical state |00 . . . 0〉 fixed by S and all Zj is a stabilizer state

• define the (logical) basis states as

|i1i2 . . . ik〉 = X
i1
1 · · ·Xik

k |00 . . . 0〉
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Canonical Basis

• fix logical operators Xj and Zj

• the stabilizer S and the logical operators Zj mutually commute

• the logical state |00 . . . 0〉 fixed by S and all Zj is a stabilizer state

• define the (logical) basis states as

|i1i2 . . . ik〉 = X
i1
1 · · ·Xik

k |00 . . . 0〉

generalization: union stabilizer codes

• take the vector space sum of several subspaces from the decomposition

|j; i1i2 . . . ik〉 = tjX
i1
1 · · ·Xik

k |00 . . . 0〉

• corresponds to the union of cosets C⋆ + tj of the normalizer code C⋆
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Stabilizer, Normalizer & Translations

stabilizer state






























SX1 SZ1
...

...

SXn−k SZn−k

Z
X

1 Z
Z

1
...

...

Z
X

k Z
Z

k

X
X

1 X
Z

1
...

...

X
X

k X
Z

k






























stabilizer







translation subgroup







tX1 tZ1
...

...

tXK tZK







set of translations
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Example: Five Qubit Code [[5, 1, 3]]













X X Z I Z

Z X X Z I

I Z X X Z

Z I Z X X

I I Z Y Z

I I X Z X













=̂













1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 1 0

0 0 1 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 1 0 1

1 0 0 1 0

0 1 0 0 1

1 0 1 0 0

0 0 1 1 1

0 0 0 1 0













=̂













1 1 ω 0 ω

ω 1 1 ω 0

0 ω 1 1 ω

ω 0 ω 1 1

0 0 ω ω2 ω

0 0 1 ω 1
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Graphical Quantum Codes

[D. Schlingemann & R. F. Werner: QECC associated with graphs, PRA 65 (2002), quant-ph/0012111]

[Grassl, Klappenecker & Rötteler: Graphs, Quadratic Forms, & QECC, ISIT 2002, quant-ph/0703112]

Basic idea

• given C ≤ C⋆, we can find D with C ≤ D = D∗ ≤ C⋆

• D is a classical symplectic self-dual code defining a single quantum state

C0 = [[n, 0, d]]q

• the standard form of the stabilizer matrix is (I |A)
• self-duality implies that A is symmetric

• A can be considered as adjacency matrix of a graph with n vertices

• logical X-operators give rise to more quantum states in the code

C = [[n, k, d′]]q

• use additionally k input vectices
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Graphical Representation of [[6, 2, 3]]3
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stabilizer & logical X-operators graphical representation
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Encoder based on Graphical Representation

[M. Grassl, Variations on Encoding Circuits for Stabilizer Quantum Codes, LNCS 6639, pp. 142–158, 2011]
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The Graphical Representation is not Unique

There are four non-isomorphic graphs which yield graphical quantum codes

that are equivalent to Steane’s CSS code [[7, 1, 3]]2:

The graphs are related by local complementation.
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CSS-like Codes from Non-linear Codes

recall: CSS codes

basis states

|xi + C⊥
2 〉 := 1

√

|C⊥
2 |

∑

y∈C⊥

2

|xi + y〉,

where xi are representatives of C1/C
⊥
2

generalization:

basis states

|Si〉 :=
1

√

|Si|
∑

c∈S

|c〉,

where Si are some disjoint sets of codewords

Lemma

min
i 6=j

dist(Si, Sj) ≥ d =⇒ distance d with respect to X-errors
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CSS-like Codes: Phase Errors

• phase errors correspond to measurements:

I = P0 + P1 = |0〉〈0|+ |1〉〈1| Z = P0 − P1 = |0〉〈0| − |1〉〈1|

• distance d with respect to Z-errors if measuring d− 1 positions does not

reveal information about the quantum state

• probability of measurement result x = xi1 . . . xid−1
is proportional to the

number of words in Sj with x at the corresponding positions

• measurement result is completely random if all possible strings x appear

equally often

Lemma (see also [Feng, Ling & Xing, IEEE-IT 52 (2006)])

each Sj is an OA of strength d− 1 =⇒ distance d with respect to Z-errors
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Quantum Codes from Classical Codes: An overview

Example: Z4-linear Quantum Codes

[Ling & Solé, “Nonadditive Quantum Codes from Z4-Codes”, preprint hal-00338309, (2008)]

Theorem Suppose C ⊂ C ′ are two linear Z4-codes of length n with

|C| = 4k12k2 and |C ′| = 4k
′

12k
′

2 .

Then there exists a quantum code ((2n,K, d))2 with K = 22k1+k2−2k′
1
−k′

2 and

d ≥ min{dLee(C ′ \ C), dLee(C⊥)}.
Examples:

• ((64, 210, 12))2 from the Calderbank-McGuire code C ′ = (32, 237, 12)Z4

and a subcode C = (32, 227)Z4
with dual distance dLee(C

⊥) = 12

• CSS-like codes from Goethals/Preparata codes, but better codes can be

obtained using union stabilizer codes ([Grassl & Rötteler, ISIT 2008])
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An Improved Family of Non-Additive Codes

[Grassl & Rötteler, ISIT 2008]

• Steane’s enlargement construction applied to C⊥
G ⊂ CG ⊂ CP , where CG

and CP are linear subcodes of the Goethals and Preparata codes, yields

C0 = [[2m, 2m − 7m+ 3, 8]]

• using the translations T0 = {(t(1)|t(2)) : t(1), t(2) ∈ T } we obtain a union

stabilizer code C = ((2m, 22
m−5m+1, 8))

• the best stabilizer code known to us has parameters [[2m, 2m − 5m− 2, 8]]

Reed-Muller Goethals BCH Goethals-Preparata

[[64, 20, 8]] ((64, 230, 8)) [[64, 32, 8]] ((64, 235, 8))

[[256, 182, 8]] ((256, 2210, 8)) [[256, 214, 8]] ((256, 2217, 8))

[[1024, 912, 8]] ((1024, 2966, 8)) [[1024, 972, 8]] ((1024, 2975, 8))
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