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Quantum Codes from Classical Codes: An overview

‘Quantum Information (I) I

Quantum-bit (qubit)

basis states:

‘0" = |0) = cC? 1" =|l) = e’

general state:

lq) = a|0) + B|1) where «, 0 € C, |a]2 + |5|2 =1

measurement:

2, projection Py = [0)(0]

e result “0" with probability |«

e result “1” with probability |3|?, projection P; = |1)(1]
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Quantum Codes from Classical Codes: An overview

‘Quantum Information (II) I

Quantum register

basis states:

general state:

) = Z Ca|T) where Zwe{o,l}n cpl? = 1

xc{0,1}"

— normalized vector in (C?)®" =~ 2"

basis vectors are labelled by bitstrings x

partial measurement of first qubit, e. g., result “0":

W) =a(j0)0l@ L@ @ L)) =a Y coyly)

ye{0,1}n—1
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Quantum Codes from Classical Codes: An overview

‘Quantum Information (III)I

Quantum operations

e unitary transformations
(solution of Schrodinger equation for closed systems)

e measurements: orthogonal projection operators P;

Elementary operations

e local unitary operations U =1 ® ... IQU ®I®...® I where
U e SU(2)

e ‘“controlled NOT operation”

( )Agwsmwmwm
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Quantum Codes from Classical Codes: An overview

‘Quantum Information (IV)I

e ensemble of quantum states |v;) with probabilities p;

Mixed States

e modelled by density matrix
p = pilti) (¥l

where [1;)(1);| is the projector onto the state |v;)

e example:
measurement of |¢) = «|0) + §|1) in standard basis {|0), |1)}

a? 0

0 |8
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Quantum Codes from Classical Codes: An overview

‘ Interaction System/Environment I

“Closed” System

environment |¢) ——

} — Uenv/sys (’5> |¢>>

mt(gr—
action

system |¢p) — .

“Channel”

Q: Pin = |¢><¢| —— Pout ‘= ’¢ ¢’ ZEmeET

with Kraus operators (error operators) E;

Local/low correlated errors
e product channel Q®" where Q is “close” to identity

e Q can be expressed (approximated) with error operators E; such that each
E); acts on few subsystems, e. g. quantum gates
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Quantum Codes from Classical Codes: An overview

Quantum Error-Correcting Codes'

e subspace C of a complex vector space H = CV
usually: H=C"C"®...0 C™ =: (C™)®"  “n qudits”

e errors: described by linear transformations acting on

— some of the subsystems (local errors)

— many subsystems in the same way (correlated errors)
e notation: C = [n, k,d], = (n,q",d)),

¢"-dimensional subspace C of (C7)®"
e minimum distance d:

— detection of errors acting on d — 1 subsystems

— correction of errors acting on |(d — 1)/2]| subsystems

— correction of erasures acting on d — 1 known subsystems
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Quantum Codes from Classical Codes: An overview

\ Basic Ideas'

partitioning of all words orthogonal decomposition

— combinatorics

— (linear) algebra

q™ dimensional <

° codewords

e e ¢ bounded weight errors

(CH®" =He D He, ©...OHe, D ...

° other errors
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Quantum Codes from Classical Codes: An overview

Characterization of QECCsI

QECC Characterization
[Knill & Laflamme, Phyical Review A 55, 900-911 (1997)]

A subspace C of H with orthonormal basis {|c1),...,|ck)} is an
error-correcting code for the error operators £ = {E1, Es, ...}, if there
exists constants ay; € C such that for all |¢;), |c¢;) and for all

EL B e E:
(G| ELEle;) = 6 jan. (1)
It is sufficient that (1) holds for a vector space basis of £.

— only a finite set of errors

Markus Grassl e 16.11.2012



Quantum Codes from Classical Codes: An overview

Quantum Errors'

e Interchanges |0) and |1). Corresponds to “classical” bit error.

Bit-flip error:

0 1
e Given by NOT gate X :( )
1 0

Phase-flip error:

e Inverts the relative phase of |0) and |1). Has no classical analogue!

1 0
e Given by the matrix Z =< )
0 -1

Combination:

0 -1
e Combining bit-flip and phase-flip gives Y = ( ) = XZ.
1 0
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Quantum Codes from Classical Codes: An overview

Pauli and Hadamard Matrices I

“Pauli” matrices:

Hadamard matrix: H =

Important properties:
e H'XH =7, “H changes bit-flips to phase-flips”

0 1
o /X = =-Y =-XZ, “X and Z anticommute”

—1 0

e All errors either commute or anticommute!
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Quantum Codes from Classical Codes: An overview

Repetition Code I

sender: repeats the information,

e.g. 0— 000, 1 — 111

classical:

receiver: compares received bits and makes majority decision

quantum mechanical “solution”:

sender: copies the information,

e.g ) = al0) + B[1) = [)i)])

receiver: compares and makes majority decision

but: unknown quantum states can neither be copied

nor can they be disturbance-free compared
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Quantum Codes from Classical Codes: An overview

The No-Cloning Theorem'

Theorem: Unknown quantum states cannot be copied.

Proof: The copier would map [0)|tbiank) —> [0)]0), |1)|%biank) — |1)|1), and hence

(a|0) + BI1))|[¥biank) = a[0)|0) + B[1)[1)
7 (a|0) + 6]1)) ® («|0) + B]1))
= a’(0)|0) + B7[1)[1) + aB(0)[1) + [1)]0))

Contradiction to the linearity of quantum mechanics!

Markus Grassl - 13- 16.11.2012



Quantum Codes from Classical Codes: An overview

‘Simple Quantum Error-Correcting Code'

Repetition code: |0) — |000), |1) — |111)

Encoding of one qubit:

al0) + B[1) — a|000) + B|111).

This defines a two-dimensional subspace He < Ho @ Ho ® Ho

bit-flip quantum state subspace

no error a|000) + B[111) | (1 ®1®1)Hc

1°* position | «|100) + 8]011) | (X @ 1 @ 1)Hc

2" position | a|010) + B|101) | (1 ® X ® 1)He
Y+ 61110) | (11 ® X)He

—_

3" position | a|001

Hence we have an orthogonal decomposition of Ho ® Hao ® Ho
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Quantum Codes from Classical Codes: An overview

‘Simple Quantum Error-Correcting Code'

Problem: What about phase-errors?

Phase-flip Z: |0) — |0) and |1) — —|1).

In the Hadamard basis |+), |—) given by

+) = Z5(0)+11)),
= = Z(0)=11))
the phase-flip operates like the bit-flip Z|+) = |—), Z|—) = |+).

S-S

To correct phase errors we use repetition code and Hadamard basis:

0) — (H®H®H)—=(]000)+ [111))
1) — (H®H® H)—=(]000) — [111))

(1000) + ]011) + [101) + |110))
(1001) + [010) + |100) + [111))

S

1
2
1
2

S
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Quantum Codes from Classical Codes: An overview

‘Simple Quantum Error-Correcting Code'

phase-flip quantum state subspace

no error 5(]000) + |011) + |101) + |110)) (I®1l®l)He
+2(]001) + |010) + |100) + |111))

1°* position $(|000) + |011)—|101)—|110)) (Z1e1)Hce
+2(]001) + [010)—|100) —[111))

2" position 2(]000)—]011) + [101)—|110)) (1®Z®1)Hc
+2(]001)—|010) + [100) —|111))

3" position 2(]000)—|011)—|101) + |110)) (1®1® Z)Hc
—£2(]001) + [010) + [100)—|111))

We again obtain an orthogonal decomposition of Hos ® Ha ® Ho

Markus Grassl
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Quantum Codes from Classical Codes: An overview

Shor’s Nine-Qubit Code [9,1, 3]

Bit-flip code: |0) — |000), 1) — |111)
Phase-flip code: [0) — |+ ++), [1)—]|———)
Effect of single-qubit errors on the bit-flip code:
e X-errors change the basis states, but can be corrected
e /-errors at any of the three positions:

Z|000) =  ]000)

“encoded” Z-operator
Z|111) = —[111)

— bit-flip code & error correction convert the channel into a phase-error
channel

— Concatenation of bit-flip code and phase-flip code yields [9, 1, 3]
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Quantum Codes from Classical Codes: An overview

‘Bit—flips and Phase—flips'

Let C' < I} be a linear code. Then the image of the state

c)
ek
under a bit-flip € I} and a phase-flip z € '} is given by

\/’?Z 1)*lc + x).

ceC

Hadamard transform H ® ... ® H maps this to

CL S et
ceC+

Markus Grassl - 18-
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Quantum Codes from Classical Codes: An overview

\CSS Codes'

Introduced by R. Calderbank, P. Shor, and A. Steane
[Calderbank & Shor, Physical Review A, 54, 1098-1105, 1996]
[Steane, Physical Review Letters 77, 793-797, 1996]

Construction: Let C; = [n, k1,d1]| and Cy = [n, ks, d2| be classical linear
codes with C3- < C;. Let {x,...,xx} be representatives for the cosets

C1/C5. Define quantum states

|x; +02

Fye%l

Theorem: The vector space C spanned by these states is a quantum code with
parameters [n, k1 + ko — n,d] where d > min(dy, ds).

Markus Grassl - 19— 16.11.2012



Quantum Codes from Classical Codes: An overview

‘CSS Codes — how they workI

Basis states:

’wz_i'CQ ) =

i +y)
Tz

Suppose a bit-flip error b happens to |x; + C5):

oI Z i +y+b)

Now, we introduce an ancilla register initialized in |0) and compute the

syndrome.

Markus Grassl - 20— 16.11.2012



Quantum Codes from Classical Codes: An overview

‘CSS Codes — how they work'

Let H; be the parity check matrix of Cy, i.e., xHf = 0 for all € C}.

1
Y Jwi+y +b)|(wi +y+b)H{) = T
2

yeCy

1
Cq

> @i+ y+b)|bH])
N——

yeCj eCq

Then measure the ancilla to obtain s = bH}. Use this to correct the error by a

conditional operation which flips the bits in b.

Phase-flips: Suppose we have the state

1 s
N (—)@ g, gy

V ‘C2J_‘ yEC’QL

Then H®"™ yields a superposition over a coset of Cy which has a bit-flip.
Correct it as before (with a parity check matrix for Cs).
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Quantum Codes from Classical Codes: An overview

Example: Steane’s Seven Qubit Code [7,1, 3]

Given the dual of a binary Hamming code C with generator matrix

o 0 1 0 1 1 1
G = o 1 0 1 1 1 0 |,
1 0 01 0 1 1

then C'is a [7,3,4] and C < C+. The dual code C+ is a [7,4, 3] and has
generator matrix

G =

o
O = O o
O O | o
= = O
O R R |k
R = = | O
_ O ==
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Quantum Codes from Classical Codes: An overview

0) — H | . c1)

0) — H : . Co) (o [0 0 1)
. — ) o
) ¥ : D—AD ct) Gi=| 1] 0 1 1
0) S N cs) o | 111
0 P N N S IR,
0) 1o D — cr)

1 . : :
al0) +B[1) 04—8 Z 094 +i3g3 + i2g2 + 1191)
’il,ig,’ige{o,l}

1 . . .
+5—8 E 11gs 4+ i393 + i2go +1191)
’il,ig,igE{O,l}
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Quantum Codes from Classical Codes: An overview

CSS Codes: Summary'

uses a pair of nested classical codes C'y < (' over I,

basis states of the CSS code correspond to cosets Cy +t; C C
— dimension of the code is |C7]|/|Cs]

X-errors are corrected using C7 = [n, k1, d4],

Z-errors are corrected using the Euclidean dual C5- = [n,n — ko, d5 ],

C — [l:’n,’ k‘l — kQ, Z miﬂ(dl,d%_)]]q

we can do (slightly) better if
wgt(C1 \ Ca) > wet(Ch) or wet(Cy \ OF) > wet(Cy)

we may compute the dual distance using other inner products

Markus Grassl
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Quantum Codes from Classical Codes: An overview

‘Quantum Stabilizer Codes'

[Gottesman, PRA 54 (1996); Calderbank, Rains, Shor, & Sloane, IEEE-IT 44 (1998)]

Basic ldea
Decomposition of the complex vector space into eigenspaces of operators.

Error Basis for Qudits
[A. Ashikhmin & E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT 47 (2001)]

E={X"2Z": a,pcF,},

where (you may think of C? = C[F,))

X = Z z 4+ a)(z|] forael,
xelr,
and 7P = Z wtr(ﬂz)\zﬂz\ for 8 € F, (w:=w, = exp(27i/p))
zell,
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Quantum Codes from Classical Codes: An overview

Stabilizer Codes'

common eigenspace of an Abelian subgroup & of the group G,, with elements
Wl (XMZP) @ (X272 @ ... @ (X" ZPr) = wTX*ZP,
where o, 8 € F, v € T,

quotient group:

Gn = Gp/(wl) = (F, x F)" =T x I as additive group

S Abelian subgroup
— (a,B) % (a/,3) =0 for all W (z*ZP), W' (x> ZP") € S,
where x is a symplectic inner product on ') X Iy,

Stabilizer codes correspond to symplectic codes over I x IF7.
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Quantum Codes from Classical Codes: An overview

‘Symplectic Codes'
most general:

additive codes C' C IFj x IF that are self-orthogonal with respect to

n
(v,w)* (v, w) :=tr(v-w —v  -w) = tr(z VW, — Viw;)
i=1

most studied:

IF4-linear codes C' C IFy) x IFy that are self-orthogonal with respect to

n
(v, w) * (v, w) ::v-w’—v’-w:Zviwg—v,’iwi

1=1

I ,2-linear Hermitian codes C C IFZ2 that are self-orthogonal with respect to

n
o q
THY = g XY
i=1
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Quantum Codes from Classical Codes: An overview

‘Symplectic Codes & Stabilizer Codes'

Theorem: (Ashikhmin & Knill)

Let C be a symplectic code over IF, x IF,, of size ¢" % and let
d := min{wgt(c): c € C*\ C}.

Then there is a stabilizer code C = [n, k,d],.

Special cases:

o (= Cf X C’2L with linear codes C, Uy over I, CQL C (1,
d = min{wgt(C; \ C5), wgt(Cy \ C1)}
Calderbank-Shor-Steane (CSS) codes

o (' = (7 x (' with a self-orthogonal linear code C C Cf over I,

o (' ={(v,w): v+ yw € C1} where (1 is a Hermitian self-orthogonal
linear code over IF 2 (with some particular v € F 2 \ IF;)
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Quantum Codes from Classical Codes: An overview

‘Quantum Singleton Bound'

[E. Rains, Nonbinary Quantum Codes, |IEEE-IT 45, pp. 1827-1832 (1999)]

general bound on the minimum distance of C = [n, k, d]:

2d <m—k+2 (2)

Quantum MDS codes:

quantum codes with equality in (2)

Minimum distance of a stabilizer code:
dmin(C) := min{wgt(c): ¢ € C*\ C} > dmin(C™), (3)

where C' is the symplectic code corresponding to C

Note: for QMDS codes we get equality in (3)

Markus Grassl - 20— 16.11.2012
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\Stabilizer Codes & Classical Codes'

e up to a global phase, any element of the n-qubit Pauli group P,, can be

written as
g=X"Z"@... @ X2  (a;,b; €{0,1})

e g corresponds to a binary vector (a|b) of length 2n or a vector v = a + wb
of length n over GF(4) = {0,1,w, w?}

e the product of two elements g and h given by v = a + wb and
w = ¢ + wd corresponds to v + w = (a + ¢) + w(b + d)

e two elements g and h given by v = a + wb and w = ¢ + wd commute iff
a-d—b-c=0 orequivalently v*w =tr(v-w?) =0

e the weight of g equals the Hamming weight of v
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Quantum Codes from Classical Codes: An overview

\Stabilizer Codes & Classical Codes'

a stabilizer code C = |n, k, d] is the joint +1-eigenspace of the stabilizer
group S = (S1,..., 50 _k)

the normalizer A is generated by S and logical operators X1,..., Xy,
AT AS
the stabilizer S corresponds to a self-orthogonal additive code

C = (n,2"%) over GF(4)
the normalizer N corresponds to the symplectic dual code C* = (n, 2" 1F)

the minimum distance d of C is given by

d = min{wgt(v) : v € C*\ C}

Markus Grassl
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Quantum Codes from Classical Codes: An overview

\Stabilizer and Normalizer'

stabilizer state <

2

[ 5 s7
Sow | SE
7z 7!

B AR

x| o

)

s stabilizer

Markus Grassl
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Quantum Codes from Classical Codes: An overview

Canonical Basis'

e fix logical operators X; and Z;
e the stabilizer S and the logical operators Z; mutually commute
e the logical state [00...0) fixed by S and all Z; is a stabilizer state

e define the (logical) basis states as

12 i) = X - X" [00...0)
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Canonical Basis'

e fix logical operators Yj and 7j
e the stabilizer S and the logical operators Z; mutually commute
e the logical state [00...0) fixed by S and all Z; is a stabilizer state

e define the (logical) basis states as

12 i) = X - X" [00...0)

generalization: union stabilizer codes

e take the vector space sum of several subspaces from the decomposition

5 d1d2 .. k) :tjyil---XZk|OO...O>

e corresponds to the union of cosets C* 4+ t; of the normalizer code C*

Markus Grassl - 33— 16.11.2012
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Stabilizer, Normalizer & Translations'

2

stabilizer state <

\
[ s | sz
f f > stabilizer
X Z
Sn—k Sn—k )
—X —Z
Z Z
X —Z
Z, Z,
o —=x | =z | )
X X
; : > translation subgroup
—X —Z
\ X Ak ) )
)
5 ty
: : > set of translations
X Z
\ tK tK /

Markus Grassl
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Quantum Codes from Classical Codes: An overview

Example: Five Qubit Code [5,1, 3]

— BN
— O —H OO
01001"1
10011“0
00100_0
O —H O H|Oo|lo
O O O — ||
00111_0
01100_1
11000"0
— O O Oo|lolo
— _
— BN
N ~ N X Z_X
~ N = Y_Z
N NN
<N~
< N~ N I_I
— __

— —~~
3 © 3 —| 3|
_
© 3 = —[J313
_
3 o~ — 3 w_l
— MOO"O
— 3 © 3J|lolo
~— __

16.11.2012
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Graphical Quantum Codes'

[D. Schlingemann & R. F. Werner: QECC associated with graphs, PRA 65 (2002), quant-ph/0012111]
[Grassl, Klappenecker & Rotteler: Graphs, Quadratic Forms, & QECC, ISIT 2002, quant-ph/0703112]

Basic idea
e given C < (C*, wecan find D with C <D =D*<(C”

e D is a classical symplectic self-dual code defining a single quantum state
Co = [[n, O, d]]q

e the standard form of the stabilizer matrix is (I|A)
e self-duality implies that A is symmetric
e A can be considered as adjacency matrix of a graph with n vertices

e logical X-operators give rise to more quantum states in the code

C =|n,k,d],

e use additionally £ input vectices
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Quantum Codes from Classical Codes: An overview

Graphical Representation of [6,2, 3]

(100000000102 )
010000001222
001000[010201
000100[122000
000010[02000 2
000001(221020
000000(101100
\000000[100021)

stabilizer & logical X-operators graphical representation
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Quantum Codes from Classical Codes: An overview

Encoder based on Graphical Representation'

[M. Grassl, Variations on Encoding Circuits for Stabilizer Quantum Codes, LNCS 6639, pp. 142-158, 2011]

Ft—e
|@)in { } 1%0)
s F! T
10) F % Z 72 )
] |
] |
|0) F 72 Z
JL | > | benc)
|0) F X
|0) F X ][ e
10) F Sk Sk X J
preparation of |0...0) operators X operators Z
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Quantum Codes from Classical Codes: An overview

The Graphical Representation is not Unique

There are four non-isomorphic graphs which yield graphical quantum codes
that are equivalent to Steane’s CSS code [7, 1, 3]5:

G & G &9

The graphs are related by local complementation.

Markus Grassl — 30— 16.11.2012



Quantum Codes from Classical Codes: An overview

CSS-like Codes from Non-linear Codes'

recall: CSS codes
basis states

1
@ + C5) = > lzity),

V ‘C2J_‘ yGCj

where x; are representatives of O /Cy

generalization:
basis states

|S;) = N > le)
|S ceS
where \S; are some disjoint sets of codewords

Lemma

nin dist(.S;, S;) > d = distance d with respect to X-errors
i#]
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Quantum Codes from Classical Codes: An overview

CSS-like Codes: Phase Errors'

e phase errors correspond to measurements:

I'=Po+ Py =|0)(0[+[1)(1] Z =P — P =|0)(0] —[1)(1]

e distance d with respect to Z-errors if measuring d — 1 positions does not
reveal information about the quantum state

e probability of measurement result © = x;, ...x;,_, is proportional to the
number of words in .S; with @ at the corresponding positions

e measurement result is completely random if all possible strings & appear
equally often

Lemma (see also [Feng, Ling & Xing, IEEE-IT 52 (2006)])
each S; is an OA of strength d — 1 = distance d with respect to Z-errors
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Quantum Codes from Classical Codes: An overview

Example: Z,-linear Quantum Codes'

[Ling & Solé, “Nonadditive Quantum Codes from Z4-Codes", preprint hal-00338309, (2008)]

Theorem Suppose C C C' are two linear Z4-codes of length n with

|C| = 4%12k2 and |C7] = 4F12k>.

Then there exists a quantum code (2n, K, d))s with K = 22k1+ka—2k1—k5 5p
d > min{die.(C' \ C), dLec(CH)}.

Examples:

o ((64,219,12))5 from the Calderbank-McGuire code C’ = (32,237,12)z,
and a subcode C = (32,2277, with dual distance di¢.(CF) = 12

e CSS-like codes from Goethals/Preparata codes, but better codes can be
obtained using union stabilizer codes ([Grassl & Rotteler, ISIT 2008])
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Quantum Codes from Classical Codes: An overview

An Improved Family of Non-Additive Codes'

[Grassl & Rotteler, ISIT 2008]

e Steane's enlargement construction applied to Cé C Cg C Cp, where (g
and C'p are linear subcodes of the Goethals and Preparata codes, yields
Co = [2",2™ — Tm + 3, §]

e using the translations 7o = {(t(V[t(2)) : t() ¢(2) € T} we obtain a union
stabilizer code C = ((2™,22" ~5m+1 §))

e the best stabilizer code known to us has parameters [2"",2™ — 5m — 2, §]

Reed-Muller Goethals BCH Goethals-Preparata
[64, 20, 8] (64,23°,8)) [64, 32, 8] (64, 23°,8))

[256,182,8] | ((256,2%19,8)) | [256,214, 8] (256, 2217, 8))

[1024,912, 8] | (1024, 2%, 8)) | [1024,972, 8] (1024, 2°7>, 8))
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